Fractional conservation of mass

نویسندگان

  • Stephen W. Wheatcraft
  • Mark M. Meerschaert
چکیده

The traditional conservation of mass equation is derived using a first-order Taylor series to represent flux change in a control volume, which is valid strictly for cases of linear changes in flux through the control volume. We show that using higher-order Taylor series approximations for the mass flux results in mass conservation equations that are intractable. We then show that a fractional Taylor series has the advantage of being able to exactly represent non-linear flux in a control volume with only two terms, analogous to using a first-order traditional Taylor series. We replace the integer-order Taylor series approximation for flux with the fractional-order Taylor series approximation, and remove the restriction that the flux has to be linear, or piece-wise linear, and remove the restriction that the control volume must be infinitesimal. As long as the flux can be approximated by a power-law function, the fractional-order conservation of mass equation will be exact when the fractional order of differentiation matches the flux power-law. There are two important distinctions between the traditional mass conservation, and its fractional equivalent. The first is that the divergence term in the fractional mass conservation equation is the fractional divergence, and the second is the appearance of a scaling term in the fractional conservation of mass equation that may eliminate scale effects in parameters (e.g., hydraulic conductivity) that should be scale-invariant. 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of the Fractional Conservation of Mass to Gas Flow Diffusivity Equation in Heterogeneous Porous Media

In this paper we reconsider the classical nonlinear diffusivity equation of real gas in an heterogenous porous medium in light of the recent studies about the generalized fractional equation of conservation of mass. We first recall the physical meaning of the fractional conservation of mass recently studied by Wheatcraft and Meerschaert [22] and then consider the implications in the classical m...

متن کامل

On the generalized mass transfer with a chemical reaction: Fractional derivative model

In this article using the inverse Laplace transform, we show analytical solutions for the generalized mass transfers with (and without) a chemical reaction. These transfers have been expressed as the Couette flow with the fractional derivative of the Caputo sense. Also, using the Hankel contour for the Bromwich's integral, the solutions are given in terms of the generalized Airy functions.

متن کامل

Incompressible quantum liquids and new conservation laws.

In this Letter, we investigate a class of Hamiltonians which, in addition to the usual center-of-mass momentum conservation, also have center-of-mass position conservation. We find that, regardless of the particle statistics, the energy spectrum is at least q-fold degenerate when the filling factor is p/q, where and are coprime integers. Interestingly, the simplest Hamiltonian respecting this t...

متن کامل

On using random walks to solve the space-fractional advection-dispersion equations

The solution of space-fractional advection-dispersion equations (fADE) by random walks depends on the analogy between the fADE and the forward equation for the associated Markov process. The forward equation, which provides a Lagrangian description of particles moving under specific Markov processes, is derived here by the adjoint method. The fADE, however, provides an Eulerian description of s...

متن کامل

A study of a Stefan problem governed with space–time fractional derivatives

This paper presents a fractional mathematical model of a one-dimensional phase-change problem (Stefan problem) with a variable latent-heat (a power function of position). This model includes space–time fractional derivatives in the Caputo sense and time-dependent surface-heat flux. An approximate solution of this model is obtained by using the optimal homotopy asymptotic method to find the solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008